UVA School of Medicine

Research Computing

Enabling scientific breakthroughs at scale with advanced computing


  • Infrastructure & Code

    Code & Resources SOMRC on GitHub AWS Snippets Cloud Templates Courses / Workshops Project: epihet Project: simpleCache Containers SOMRC Docker Hub Learn how to use Docker Project: LOLAweb Bots & Artificial Intelligence Alexa Skills (in development) Twitter Chatbot (in development) DC/OS Mesos Launching in late 2018, this platform will orchestrate container deployments for both on-demand, short-lived workflows and long-running services. Some example workloads:
  • Bioinformatics Resources on Rivanna

    UVA research community has access to numerous bioinformatics software installed and ready-to-use on Rivanna. They are all available via the LMod module system. In addition, Click here for a comprehensive list. Popular Bioinformatics Software Below are some popular tools and useful links for their documentation and usage: .tg {border-collapse:collapse;border-spacing:0;border-color:#ccc;} .tg td{font-family:Arial, sans-serif;font-size:14px;padding:10px 5px;border-style:solid;border-width:0px;overflow:hidden;word-break:normal;border-color:#ccc;color:#333;background-color:#fff;} .tg th{font-family:Arial, sans-serif;font-size:14px;font-weight:normal;padding:10px 5px;border-style:solid;border-width:0px;overflow:hidden;word-break:normal;border-color:#ccc;color:#333;background-color:#f0f0f0;} .tg .tg-hy9w{background-color:#eceeef;border-color:inherit;vertical-align:middle;} .tg .tg-dc35{background-color:#f9f9f9;border-color:inherit;vertical-align:middle;} .tg .tg-hy9w-nw{background-color:#eceeef;border-color:inherit;vertical-align:middle;white-space:nowrap;} .tg .tg-dc35-nw{background-color:#f9f9f9;border-color:inherit;vertical-align:middle;white-space:nowrap;} .tg .tg-0qmj{font-weight:bold;background-color:#eceeef;border-color:inherit;vertical-align:middle;} .scroll thead, .
  • Bioinformatics User Guides

    Bioinformatics on Rivanna UVA’s High-performance Computing Cluster All faculty, research staff and graduate students of UVA have access to Rivanna, university’s high-performance computing system with 290+ compute nodes (6500+ cores) for high-throughput multithreaded jobs, parallel jobs as well as memmory intensive large-scale data analyses. The architecture is specifically suited for large scale distributed genomic data analysis, with 100+ bioinformatics software packages installed and ready to use. Learn more Bioinformatics using FireCloud FireCloud Home